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We sbow tbat if orthonormal polynomials p" have asymptotically periodic
recurrence coefficients, tben tbey have uniform subexponential growtb on the sup
port of orthogonalizing measure. This is an alternative proof of results of P. Nevai,
V. Totik, and J. Zhang (J. Approx. Theory 67, 1991,215--234), D. S. Lubinsky and
P. Nevai (f. LOlldoll Math. Soc. 46, 1992, 149-160), and J. Zhang (Lillear Algehra

Appl. 186, 1993,97-115). 1995 A<ademic Press. Inc

1. INTRODUCTION

Let IJ. be a probability measure on the real line IR with an infinite support
set and all moments finite. Let {Pn} ;,K~O be a system of orthonormal poly
nomials obtained from the sequence of consecutive monomials 1, x, x 2

, ...

by the Gram-Schmidt procedure. Then the P" obey a three-term recurrence
formula of the form

xPn=an+1Pn+l +bnPn+a"P"-I' (1)

where the an are positive coefficients while hn are real ones.
We study the growth of Pn(x), for x in the support of the measure IJ..

This problem has attracted considerable attention during the last 15 years.
The first result in this subject belongs to Nevai [3] and deals with the
case of convergent coefficients an and bn, i.e., an -> al2 > 0 and h" -> h. By
Blumenthal's theorem the support of IJ. consists then of the interval
[b - a, b + a] and a countable set of points with possible accumulation

* Supported by a grant from KBN.

296
0021-9045/95 $6.00
C npyright 1995 by Academic Press. Inc.
All rights nf reproduction in any form reserved.



NOTE 297

points only in {b ± a}. It was proved In [3, Theorem 4.1.3] that for
XE [b-a, b + a]

(2)

and the convergence is almost uniform in the open interval (b - a, b + a).
Moreover it has been conjectured that the uniform convergence holds true
in the entire closed interval [b - a, b + a].

This conjecture remained unsolved until 1991 when Nevai, Totik, and
Zhang [4] proved it even in a more general setting, allowing complex
valued recurrence coefficients, and changing the squares to arbirary
positive powers p. In the case of orthogonal polynomials they proved that
the convergence in (2) is uniform on the entire support of /1, which could
differ from [b - a, b + a] by countably many points. Next the result was
extended to the case of so-called asymptotically periodic recurrence coef
ficients by Lubinsky and Nevai [2], who proved that (2) holds almost
uniformly in the interior of supp /1. Recently Zhang [7] showed that the
convergence is also uniform in the entire supp /1 for asymptotically periodic
coefficients.

In this paper we give an alternate proof of Zhang's result. The method
is a refinement of ideas of Nevai contained in [3, Proofs of Lemma 3 and
Theorem 9, p. 26]. It is rather simple, especially for the case of convergent
coefficients and is based on estimates involving the Christoffel-Darboux
identity.

2. SUBEXPONENTIAL GROWTH

Let the Pn be orthonormal polynomials satisfying (1). Fix n and consider
the polynomials Po, PI' ..., Pn-l' There exists a discrete measure /1" concen
trated on exactly n points such that

r Pk(x) PI(X) d/1n(x) = Jk.l
-oc

o~k, I ~ n-1. (3)

According to the Gauss mechanical quadrature [5] this measure is concen
trated on the zeros X 1n , ..., X nn of the polynomial P" and has the form

11

/1n = L Ak"J Xkn

k=l

11-1

A;;.1 = I PZ(Xh,).
k=O

(4)

One of the key ingredients of our proof of subexponential growth is an
estimate given below.
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PROPOSITION 1. Let f( x) be a real-valued continuous function with
compact support in IR. Then for any x E IR we have

p~(.X") maxJ(x- y)f(y)]2
'0 ~ 2 f' . .2 ? ... . '

L:Z:':oPi:(X) a" J ~x f (.I') P~ 1(.1') dp,,( .1')
(5)

Proof We will make use of the well known ChristofTel-Darboux
identity.

II-I

G"{p"(x)p,,.dY)-p,,. ,(x)p,,(yl) =(x-y) L Pk(X)Pk(Y)'
k~O

Fix x. Multiply both sides by f( .1'), raise them to the square, and integrate
against the measure dp,,(y). In doing so observe that the termp"_l(x)P,,(y)
vanishes as p" is concentrated on the zeros of p"Cv). Hence we obtain

a~p~CX")ff2(y)p~ _,(.I') dp,,(y)

= f (X_y)2 f2(y) {"f Pk(X)Pk(Yl}2 dp,,(y).
k~()

The right-hand side can be majorized by

,,-1

=max [(x-y)f(y)f I p;(x).
r k-O

The last equality follows from the orthogonality relation (3). Finally, we
get

n-I

a~ p~(x) f.rzCV) P~ . I( Y) dp,,( .1') ~ max [(x - y) fCv) f I p;(x).
.\' k-O

This shows (5). I

Fix E; > 0, and let f be the function on IR defined by

fry) =n-(1£)-' Iyl
for Iyl ~ 2r.

for 2<;< 1.1'1 ~4r.

for lyl~4r..

(6)
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We denote by I, the translate of a function f by a real number x, i.e.,

I,(y) = f(y -x).

Now we are in a position to deduce the following.

THEOREM 1 (Nevai, Totik, and Zhang [4]). If all -+ al2 and b ll -+ b,
with a> 0 then

Proof By considering the measure dfl( ax + b) and the polynomials
PII( ax + b) we can restrict our attention to the case a = 1 and b = O. The
recurrence coefficients an and bll are uniformly bounded. Hence the support
of the measure fl is also bounded. Assume that supp fl C [ - M, M]. By [3,
Theorem 3, p. 17] the sequence of measures dv IIi y) = P;' _1( y) dfln( y) is

weakly convergent to the probability measure (2In) Jl=7 dy.
The supports of the measures dvn ( y) are also contained in [ - M, M].

Observe that

lim max If2(y, - t) - f2(J'2 - t)1 = O.
Y1 - Y2 t E IR

Hence

fx 2 f'}~': _xf~(y)p;,_,(Y)dflll(Y)=; _,f~(y)jl-y2dY, (7)

and the convergence is uniform with respect to x from the interval
[ - 1- G, 1+ G].

By the definition of I, we have

;:::rX[x-2F..x +2F.](Y).j1=TYf dy
-I

;:::r fi-=J dy = ~ G fi·
I-F.

Now by the uniform convergence in (7) we have
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Observe that

NOTE

max [(x-y)fx(y)f~4G2.

"
Combining the last two inequalities and (5), and taking into account that
all -> 1/2 we obtain

. p;'Cx) r
hm sup sup 1 0 ~ 12n V G.

II'X H[ 1-1.1 +1:] L~:OPk(X)
(8)

By Blumenthal's theorem the set supp f.J \[ - I - f:, I + f:] consists of
finitely many points x for which the sequence PII(X) is square summable.
Hence

lim sup sup
11 ---+ (f.. \" E SUPP/l\[ I

p;'Cx) = 0
/.1 +/] LZ:bp~(x) .

(9)

Now combining (8) and (9) and letting G tend to 0 gives the conclusion. I
Theorem I generalizes to the case of asymptotically periodic recurrence

coefficients. In order to carryover the proof we will need new termi
nology. In what is described below we follow [6, Chap. 2] (see also [I,
pp. 245-246]).

For the polynomials PII satisfying (I) the associated polynomials p~/k) of
order k are given by the recurrence relation

with initial conditions P6k
) = I, pl~\ = O.

Fix a positive integer N. We say that the sequences {all} ,~~o and
{b ll } ,~~ ° are asymptotically N-periodic if for every integer j the limits

a(O) = lim a
J Nllti'

IT-+C£

blO) = lim b
I N/I-t.l

11 ---.·x

do exist. Obviously the sequences ajO) and bjOI are periodic with period N.
Let q,,(x) denote the orthonormal polynomials with periodic recurrence

coefficients a;,O), b;,OI. Let

I
{

10) }. _ . aN III
TCx)-2- qN(X)--(0-I-QN-2'

a N + I

E={xEIRI-I~T(x)~I}.

It turns out (see [I, Lemma 2, pp. 255-256]) that E consists of N closed
intervals (they can meet only at the endpoints) and between every two
consecutive intervals there is exactly one zero of each of the polynomials
T'(x) and q;/ICX), j? 0 (if two intervals meet at Xo then T'(x) and q:,il(x)
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vanish at x o). The support of the measure /1, with respect to which the
polynomials p" are orthonormal, is of the form

supp /1 = Eu E*,

where E* is a denumerable set of points of which the accumulation points
are in E.

In order to carry out the proof of subexponential growth for asymptoti
cally periodic coefficients we will need an analog of the limit relation (7).
Actually the limit in (7) exists if n ranges over arithmetic progression of
step N (see the proof of [3, Lemma 3.2.1, p. 16]). However, we need an
explicit form of the measures that are obtained by this limit procedure.

The material in this paragraph was suggested by Walter Van Assche. Let
E/ = {x E IR : q~~~: '(x) = O}. By [6, Theorem 2.24] we have

( ~) a(O) { alOI }
lim. .PkN+J-I - = . J+I (j1+_J_ (j+'1-2 /T 2(-)'-1
k- P .(-) 2(a IO ))2 q (j+I) qN a(OI qN--2 V -

x kN+;- ; N-I ;+1

( 10)

for ::'EC\(EuE*uE/), where jT 2(z)-1 is that branch of the square

root for which IT(::.)+.jT2(::.)-11 ~ 1.
By [6, p. 79], the Stieltjes transforms of the probability measures

d},,,(x) = P;'_I (x) d/1IJx) (see (3) and (4) for the definition of /1/1) are given by

Thus the sequence of the measures }'kN + J(t) is weakly convergent to a
probability measure AIJl whose Stieltjes transform is given by the right
hand side of (10). By the inverse Stieltjes transform formula it can be
computed that A(jl is of the form

where },if) is a discrete measure concentrated on the zeros of q~~ ~ : I, and XE

denotes the indicator function of the set E.
We are now ready to show the following

THEOREM 2 (Zhang [7]). Let N be a fixed positive integer. Let {a,,};,.c~o

and {b,,} I~~O be asymptotically N-periodic sequences with a,l' b" E IR, and
inf" a" > O. Then



302 NOTE

Proof Let f be the function defined by (6). Then by the remarks
preceding the statement of the theorem we have

lim f~(Y)P~N+i I(y)dflk,+j I(Y)
/.; .'1.,' .

(0) )1 T 2( ,)

= f f~(Y)d;,~j)(Y)+2~i~~)2ff~(Y) I Ij-=I)('~I l~V,
(Ii [, qN-1 )

wheref,( y) = f( Y - x). Moreover, supp fl = Eu E*, where E* is a denumer
able set which could accumulate only in E. Thus following the lines of the
proof of Theorem I, we are done if the function )1 - T 2

( Y )/Iq~r,: :tv) I
has zeros of order 1/2. But the zeros of this expression are the endpoints
of the N intervals constituting E. If an endpoint belongs to only one of
the intervals, then it is a zero of order 1/2. If an endpoint belongs to two
intervals then it is zero of order I of the numerator. But it is also a zero
of the denominator as the zeros of q;~~: I( y) lie between every two
consecutive intervals of E. Hence the common endpoints of two intervals

are removable singularities of )1 - T2(y)/lq:~+ itv)l. Now the rest of the
proof of Theorem I applies. I
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